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1 Introduction

1.1 The Statistical Description and
Understanding of Climate

Climatology was originally a sub-discipline of
geography, and was therefore mainly descriptive
(see, e.g., Br̈uckner [70], Hann [155], or Hann
and Knoch [156]). Description of the climate
consisted primarily of estimates of its mean state
and estimates of its variability about that state,
such as its standard deviations and other simple
measures of variability. Much of climatology is
still focused on these concerns today. The main
purpose of this description is to define ‘normals’
and ‘normal deviations,’ which are eventually
displayed as maps. These maps are then used
for regionalization (in the sense of identifying
homogeneous geographical units) and planning.
The paradigm of climate research evolved from
the purely descriptive approach towards an
understanding of the dynamics of climate with the
advent of computers and the ability to simulate the
climatic state and its variability. Statistics plays an
important role in this new paradigm.

The climate is a dynamical system influenced
not only by immense external factors, such as solar
radiation or the topography of the surface of the
solid Earth, but also by seemingly insignificant
phenomena, such as butterflies flapping their
wings. Its evolution is controlled by more or
less well-known physical principles, such as the
conservation of angular momentum. If we knew
all these factors, and the state of the full climate
system (including the atmosphere, the ocean, the
land surface, etc.), at a given time in full detail,
then there would not be room for statistical
uncertainty, nor a need for this book. Indeed, if we
repeat a run of a General Circulation Model, which
is supposedly amodelof the real climate system,
on the same computer with exactly the same code,
operating system, and initial conditions, we obtain
a second realization of the simulated climate that
is identical to the first simulation.

Of course, there is a ‘but.’ We do not know
all factors that control the trajectory of climate in

its enormously large phase space.1 Thus it is not
possible to map the state of the atmosphere, the
ocean, and the other components of the climate
system in full detail. Also, the models are not
deterministic in a practical sense: an insignificant
change in a single digit in the model’s initial
conditions causes the model’s trajectory through
phase space to diverge quickly from the original
trajectory (this is Lorenz’s [260] famous discovery,
which leads to the concept of chaotic systems).

Therefore, in a strict sense, we have a
‘deterministic’ system, but we do not have
the ability to analyse and describe it with
‘deterministic’ tools, as in thermodynamics.
Instead, we use probabilistic ideas and statistics to
describe the ‘climate’ system.

Four factors ensure that the climate system is
amenable to statistical thinking.

• The climate is controlled by innumerable
factors. Only a small proportion of these
factors can be considered, while the rest
are necessarily interpreted as background
noise. The details of the generation of this
‘noise’ are not important, but it is important
to understand that this noise is aninternal
source of variation in the climate system
(see also the discussion of ‘stochastic climate
models’ in Section 10.4).

• The dynamics of climate are nonlinear.
Nonlinear components of thehydrodynamic
part include important advective terms, such
as u ∂u

∂x . The thermodynamicpart contains
various other nonlinear processes, including
many that can be represented by step
functions (such as condensation).

1We use the expression ‘phase space’ rather casually. It
is the space spanned by the state variablesx of a system
dx
dt = f (x). In the case of the climate system, the state
variables consist of the collection of all climatic variables at
all geographic locations (latitude, longitude, height/depth). At
any given time, the state of the climate system is represented by
one point in this space; its development in time is represented
by a smooth curve (‘trajectory’).
This concept deviates from the classical mechanical definition
where the phase space is the space of generalized coordinates.
Perhaps it would be better to use the term ‘state space.’

1



2 1: Introduction

• The dynamics include linearly unstable
processes, such as the baroclinic instability in
the midlatitude troposphere.

• The dynamics of climate are dissipative. The
hydrodynamic processes transport energy
from large spatial scales to small spatial
scales, while molecular diffusion takes place
at the smallest spatial scales. Energy is
dissipated through friction with the solid
earth and by means of gravity wave drag at
larger spatial scales.2

The nonlinearities and the instabilities make
the climate systemunpredictablebeyond certain
characteristic times. These characteristic time
scales are different for different subsystems, such
as the ocean, midlatitude troposphere, and tropical
troposphere. The nonlinear processes in the system
amplify minor disturbances, causing them to
evolve irregularly in a way that allows their
interpretation as finite-amplitude noise.

In general, the dissipative character of the
system guarantees its ‘stationarity.’ That is, it does
not ‘run away’ from the region of phase space that
it currently occupies, an effect that can happen in
general nonlinear systems or in linearly unstable
systems. The two factors, noise and damping,
are the elements required for the interpretation of
climate as a stationary stochastic system (see also
Section 10.4).

Under what circumstances should the output
of climate models be considered stochastic? A
major difference between the real climate and any
climate model is the size of the phase space. The
phase space of a model is much smaller than that of
the real climate system because the model’s phase
space is truncated in both space and time. That is,
the background noise, due to unknown factors, is
missing. Therefore a model run can be repeated
with identical results, provided that the computing
environment is unchanged and the same initial
conditions are used. To make the climate model
output realistic we need to make the model
unpredictable. Most Ocean General Circulation
Models are strongly dissipative and behave almost
linearly. Explicit noise must therefore be added
to the system as an explicit forcing term to
create statistical variations in the simulated system
(see, for instance [276] or [418]). In dynamical
atmospheric models (as opposed to energy-balance
models) the nonlinearities are strong enough to

2The gravity wave drag maintains an exchange of
momentum between the solid earth and the atmosphere, which
is transported by means of vertically propagating gravity waves.
See McFarlane et al. [269] for details.

create their own unpredictability. These models
behave in such a way that a repeated run will
diverge quickly from the original run even if only
minimal changes are introduced into the initial
conditions.

1.1.1 The Paradigms of the Chaotic and
Stochastic Model of Climate. In the paradigm
of the chaotic model of the climate, and
particularly the atmosphere, a small difference
introduced into the system at someinitial time
causes the system to diverge from the trajectory it
would otherwise have travelled. This is the famous
Butterfly Effect3 in which infinitesimally small
disturbances may provoke large reactions. In terms
of climate, however, there is not justone small
disturbance, but myriads of such disturbances at
all times. In the metaphor of the butterfly: there
are millions of butterflies that flap their wings all
the time. The paradigm of the stochastic climate
model is that this omnipresent noise causes the
system to vary on all time and space scales,
independently of the degree of nonlinearity of the
climate’s dynamics.

1.2 Some Typical Problems and
Concepts

1.2.0 Introduction. The following examples,
which we have subjectively chosen as being
typical of problems encountered in climate
research, illustrate the need for statistical analysis
in atmospheric and climatic research. The order
of the examples is somewhat random and it is
certainly not a must to read all of them; the purpose
of this ‘potpourri’ is to offer a flavour of typical
questions, answers, and errors.

1.2.1 The Mean Climate State: Interpretation
and Estimation. From the point of view of
the climatologist, the most fundamental statistical
parameter is the mean state. This seemingly trivial
animal in the statistical zoo has considerable
complexity in the climatological context.

First, the computed mean is not entirely reliable
as an estimate of the climate system’s true long-
term mean state. The computed mean will contain
errors caused by taking observations over a limited
observing period, at discrete times and a finite
number of locations. It may also be affected
by the presence of instrumental, recording, and

3Inaudil et al. [194] claimed to have identified a Lausanne
butterfly that caused a rainfall in Paris.
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Figure 1.1:The 300 hPa geopotential height fields in the Northern Hemisphere: the mean 1967–81
January field, the January 1971 field, which is closer to the mean field than most others, and the January
1981 field, which deviates significantly from the mean field. Units: 10 m [117].

transmission errors. In addition, reliability is not
likely to be uniform as a function of location.

Reliability may be compromised if the data has
been ‘analysed’, that is, interpolated to a regular
grid using techniques that make assumptions
about atmospheric dynamics. The interpolation is
performed eithersubjectivelyby someone who
has experience and knowledge of the shape of
dynamical structures typically observed in the
atmosphere, or it is performedobjectivelyusing a
combination of atmospheric and statistical models.
Both kinds of analysis are apt to introduce biases
not present in the ‘raw’ station data, and errors
at one location in analysed data will likely be
correlated with those at another. (See Daley [98]
or Thiébaux and Pedder [362] for comprehensive
treatments of objective analysis.)

Second, the mean state isnot a typical state.
To demonstrate this we consider the January
Northern Hemisphere 300 hPa geopotential height
field4 (Figure 1.1). The mean January height field,
obtained by averaging monthly mean analyses for
each January between 1967 and 1981, has contours
of equal height which are primarily circular with
minor irregularities. Two troughs are situated over
the eastern coasts of Siberia and North America.
The Siberian trough extends slightly farther south
than the North American trough. A secondary
trough can be identified over eastern Europe and
two minor ridges are located over the northeast
Pacific and the east Atlantic.

4The geopotential height fieldis a parameter that is
frequently used to describe the dynamical state of the
atmosphere. It is the height of the surface of constant pressure
at, e.g., 300 hPa and, being a length, is measured in metres. We
will often simply refer to ‘height’ when we mean ‘geopotential
height’.

Some individual January mean fields (e.g.,
1971) are similar to the long-term mean field.
There are differences in detail, but they share
the zonal wavenumber 2 pattern5 of the mean
field. The secondary ridges and troughs have
different intensities and longitudinal phases. Other
Januaries (e.g., 1981) 300 hPa geopotential height
fields are very different from the mean state. They
are characterized by a zonal wavenumber 3 pattern
rather than a zonal wavenumber 2 pattern.

The long-term mean masks a great deal of
interannual variability. For example, the minimum
of the long-term mean field is larger than the
minima of all but one of the individual January
states. Also, the spatial variability of each of the
individual monthly means is larger than that of the
long-term mean. Thus, the long-term mean field is
not a ‘typical’ field, as it is very unlikely to be
observed as an individual monthly mean. In that
sense, the long-term mean field is a rare event.

Characterization of the ‘typical’ January re-
quires more than the long-term mean. Specifically,
it is necessary to describe the dominant patterns
of spatial variability about the long-term mean and
to say something about the range of patterns one
is likely to see in a ‘typical’ January. This can be
accomplished to a limited extent through the use of
a technique calledEmpirical Orthogonal Function
analysis(Chapter 13).

Third, a climatological mean should be under-
stood to be a moving target. Today’s climate is
different from that which prevailed during the
Holocene (6000 years before present) or even
during the Little Ice Age a few hundred years ago.

5A zonal wavenumber 2 pattern contains two ridges and two
troughs in the zonal, or east–west, direction.
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We therefore need a clear understanding of
our interpretation of the ‘true’ mean state before
interpreting an estimate computed from a set of
observations.

To accomplish this, it is necessary to think of
the ‘January 300 hPa height field’ as arandom
field, and we need to determine whether the
observed height fields in our 15-year sample are
representative of the ‘true’ mean state we have in
mind (presumably that of the ‘current’ climate).
From a statistical perspective, the answer is a
conditional ‘yes,’ provided that:

1 the time series of January mean 300 hPa
height fields is stationary (i.e., their statistical
properties do not drift with time), and

2 the memory of this time series is short relative
to the length of the 15-year sample.

Under these conditions, the mean state is
representative of the random sample, in the sense
that it lies in the ‘centre’ of the scatter of the
individual points in the state space. As we noted
above, however, it is not representative in many
other ways.

The characteristics of the 15-year sample may
not be representative of the properties of January
mean 300 hPa height fields on longer time scales
when assumption 1 is not satisfied. The uncertainty
of the 15-year mean height field as an estimator
of the long-term mean will be almost as great
as the interannual variability of the individual
January means when assumption 2 is not satisfied.
We can have confidence in the 15-year mean
as an estimator of the long-term mean January
300 hPa height field when assumptions 1 and 2
hold in the following sense: thelaw of large
numbersdictates that a multi-year mean becomes
an increasingly better estimator of the long-term
mean as the number of years in the sample
increases. However, there is still a considerable
amount of uncertainty in an estimate based on a
15-year sample.

Statements to the effect that a certain estimate
of the mean is ‘wrong’ or ‘right’ are often made
in discussions of data sets and climatologies. Such
an assessment indicates that the speakers do not
really understand the art of estimation. An estimate
is by definition an approximation, or guess, based
on the available data. It is almost certain that the
exact value will never be determined. Therefore
estimates are never ‘wrong’ or ‘right;’ rather, some
estimates will be closer to the truth than others on
average.

To demonstrate the point, consider the following
two procedures for estimating the long-term mean
January air pressure in Hamburg (Germany). Two
data sets, consisting of 104 observations each, are
available. The first data set is taken at one minute
intervals, the second is taken at weekly intervals,
and a mean is computed from each. Both means
are estimates of the long-term mean air pressure in
Hamburg, and each tells us something about our
parameter.

The reliability of the first estimate is question-
able because air pressure varies on time scales
considerably longer than the 104 minutes spanned
by the data set. Nonetheless, the estimate does
contain information useful to someone who has
no prior information about the climate of locations
near sea level: it indicates that the mean air
pressure in Hamburg is neither 2000 mb nor 20 hPa
but somewhere near 1000 mb.

The second data set provides us with a
much more reliable estimate of long-term mean
air pressure because it contains 104 almost
independent observations of air pressure spanning
two annual cycles. The first estimate is not
‘wrong,’ but it is not very informative; the second
is not ‘right,’ but it is adequate for many purposes.

1.2.2 Correlation. In the statistical lexicon,
the word correlation is used to describe a
linear statisticalrelationship between two random
variables. The phrase ‘linear statistical’ indicates
that the mean of one of the random variables is
linearly dependent upon the random component
of the other (see Section 8.2). The stronger the
linear relationship, the stronger the correlation.
A correlation coefficient of+1 (−1) indicates a
pair of variables that vary together precisely, one
variable being related to the other by means of a
positive (negative) scaling factor.

While this concept seems to be intuitively
simple, it does warrant scrutiny. For example,
consider a satellite instrument that makes radiance
observations in two different frequency bands.
Suppose that these radiometers have been designed
in such a way that instrumental error in one
channel is independent of that in the other. This
means that knowledge of the noise in one channel
provides no information about that in the other.
However, suppose also that the radiometers drift
(go out of calibration) together as they age because
both share the same physical environment, share
the same power supply and are exposed to the same
physical abuse. Reasonable models for the total
error as a function of time in the two radiometer
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Figure 1.2:The monthly mean Southern Oscillation Index, computed as the difference between Darwin
(Australia) and Papeete (Tahiti) monthly mean sea-level pressure (‘Jahr’ is German for ‘year’).

Figure 1.3:Auto-correlation function of the index shown in Figure 1.2. Units: %.

channels might be:

e1t = α1(t − t0)+ ε1t ,

e2t = α2(t − t0)+ ε2t ,

where t0 is the launch time of the satellite and
α1 andα2 are fixed constants describing the rates
of drift of the two radiometers. The instrumental
errors,ε1t andε2t , are statistically independent of
each other, implying that the correlation between
the two, ρ(ε1t , ε2t ), is zero. Consequently the
total errors, e1t and e2t , are also statistically
independent even though they share a common
systematic component. However, simple estimates
of correlation betweene1t and e2t that do not
account for the deterministic drift will suggest that
these two quantities are correlated.

Correlations manifest themselves in several dif-
ferent ways in observed and simulated climates.
Several adjectives are used to describe corre-
lations depending upon whether they describe
relationships in time (serial correlation, lagged
correlation), space (spatial correlation, telecon-
nection), or between different climate variables
(cross-correlation).

A good example ofserial correlation is the
monthly Southern Oscillation Index (SOI),6 which

6The Southern Oscillation is the major mode of natural
climate variability on the interannual time scale. It is frequently
used as an example in this book.
It has been known since the end of the last century
(Hildebrandson [177]; Walker, 1909–21) that sea-level pressure
(SLP) in the Indonesian region is negatively correlated with that
over the southeast tropical Pacific. A positive SLP anomaly
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is defined as the anomalous monthly mean
pressure difference between Darwin (Australia)
and Papeete (Tahiti) (Figure 1.2).

The time series is basically stationary, although
variability during the first 30 years seems to be
somewhat weaker than that of late. Despite the
noisy nature of the time series, there is a distinct
tendency for the SOI to remain positive or negative
for extended periods, some of which are indicated
in Figure 1.2. This persistence in the sign of the
index reflects the serial correlation of the SOI.

A quantitative measure of the serial correlation
is the auto-correlation function, ρSO I(t, t + 1),
shown in Figure 1.3, which measures the similarity
of the SOI at any time difference1. The auto-
correlation is greater than 0.2 for lags up to
about six months and varies smoothly around zero
with typical magnitudes between 0.05 and 0.1
for lags greater than about a year. This tendency
of estimated auto-correlation functions not to
converge to zero at large lags, even though the
real auto-correlation is zero at long lags, is a
natural consequence of the uncertainty due to finite
samples (see Section 11.1).

A good example of across-correlationis the
relationship that exists between the SOI and
various alternative indices of the Southern Os-
cillation [426]. The characteristic low-frequency
variations in Figure 1.2 are also present in area-
averaged Central Pacific sea-surface temperature
(Figure 1.4).7 The correlation between the two
time series displayed in Figure 1.4 is 0.67.

Pattern analysis techniques, such as Empiri-
cal Orthogonal Function analysis (Chapter 13),
Canonical Correlation Analysis (Chapter 14) and
Principal Oscillation Patterns (Chapter 15), rely
upon the assumption that the fields under study are

(i.e., a deviation from the long-term mean) over, say, Darwin
(Northern Australia) tends to be associated with a negative
SLP anomaly over Papeete (Tahiti). This seesaw is called
the Southern Oscillation (SO). The SO is associated with
large-scale and persistent anomalies of sea-surface temperature
in the central and eastern tropical Pacific (El Niño and
La Niña). Hence the phenomenon is often referred to as
the ‘El Niño/Southern Oscillation’ (ENSO). Large zonal
displacements of the centres of precipitation are also associated
with ENSO. They reflect anomalies in the location and intensity
of the meridionally (i.e., north–south) oriented Hadley cell and
of the zonally oriented Walker cell.
The state of the Southern Oscillation may be monitored with the
monthly SLP difference between observations taken at surface
stations in Darwin, Australia and Papeete, Tahiti. It has become
common practice to call this difference the Southern Oscillation
Index (SOI) although there are also many other ways to define
equivalent indices [426].

7Other definitions, such as West Pacific rainfall, sea-level
pressure at Darwin alone or the surface zonal wind in the central
Pacific, also yield indices that are highly correlated with the
usual SOI. See Wright [427].

spatially correlated. The Southern Oscillation In-
dex (Figure 1.2) is a manifestation of the negative
correlation between surface pressure at Papeete
and that at Darwin. Variables such as pressure,
height, wind, temperature, and specific humidity
vary smoothly in the free atmosphere and con-
sequently exhibit strong spatial interdependence.
This correlation is present in each weather map
(Figure 1.5, left). Indeed, without this feature,
routine weather forecasts would be all but impos-
sible given the sparseness of the global observing
network as it exists even today. Variables derived
from moisture, such as cloud cover, rainfall and
snow amounts, and variables associated with land
surface processes tend to have much smaller spa-
tial scales (Figure 1.5, right), and also tend not to
have normal distributions (Sections 3.1 and 3.2).
While mean sea-level pressure (Figure 1.5, left)
will be more or less constant on spatial scales of
tens of kilometres, we may often travel in and out
of localized rain showers in just a few kilometres.
This dichotomy is illustrated in Figure 1.5, where
we see a cold front over Ontario (Canada). The
left panel, which displays mean sea-level pressure,
shows the front as a smooth curve. The right panel
displays a radar image of precipitation occurring
in southern Ontario as the front passes through the
region.

1.2.3 Stationarity, Cyclo-stationarity, and Non-
stationarity. An important concept in statistical
analysis isstationarity. A random variable, or a
random process, is said to be stationary if all
of its statistical parameters are independent of
time. Most statistical techniques assume that the
observed process is stationary.

However, most climate parameters that are
sampled more frequently than one per year are
not stationary butcyclo-stationary, simply because
of the seasonal forcing of the climate system.
Long-term averages of monthly mean sea-level
pressure exhibit a marked annual cycle, which is
almost sinusoidal (with one maximum and one
minimum) in most locations. However, there are
locations (Figure 1.6) where the annual cycle is
dominated by asemiannualvariation (with two
maxima and minima). In most applications the
mean annual cycle is simply subtracted from the
data before the remaininganomaliesare analysed.
The process iscyclo-stationary in the meanif it is
stationary after the annual cycle has been removed.

Other statistical parameters (e.g., the percentiles
of rainfall) may also exhibit cyclo-stationary
behaviour. Figure 1.7 shows the annual cycles
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Figure 1.4:The conventional Southern Oscillation Index (SOI = pressure difference between Darwin
and Tahiti; dashed curve) and a sea-surface temperature (SST) index of the Southern Oscillation (solid
curve) plotted as a function of time. The conventional SOI has been doubled in this figure.

Figure 1.5:State of the atmosphere over North America on 23 May 1992.
Left: Analysis of the sea-level pressure field (12:00 UTC (Universal Time Coordinated); from
Europ̈aisher Wetterbericht 17, Band 144; with permission of the Deutsher Wetterdienst).
Right: Weather radar image, showing rainfall rates, for southern Ontario (19:30 local time; courtesy
Paul Joe, AES Canada [94].)
Note that the radar image and the weather map refer to different times, namely 12:00 UTC on 23 May
and 00:30 UTC on 24 May.

of the 70th, 80th, and 90th percentiles8 of 24-
hour rainfall amounts for each calendar month at

8Or ‘quantiles,’ that is, thresholds selected so that 70%,
80%, or 90% of all 24-hour rainfall amounts are less than the
respective threshold [2.6.4].

Vancouver (British Columbia) and Sable Island
(off the coast of Nova Scotia) [450].

The Southern Oscillation Index is not strictly
stationary. Wright [427] showed that the linear
serial correlation of the SOI depends upon the time
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Figure 1.6:Annual cycle of sea-level pressure at extratropical locations.
a) Northern Hemisphere Ocean Weather Stations: A =62◦ N, 33◦ W; D = 44◦ N, 41◦ W; E = 35◦ N,
48◦ W; J = 52◦ N, 25◦ W; P = 50◦ N, 145◦ W.
b) Southern Hemisphere.

Figure 1.7: Monthly 90th, 80th, and 70th per-
centiles (from top to bottom) of 24-hour rainfall
amounts at Vancouver and Sable Island [450].

of the year. The serial correlation is plotted as a
function of time of year and lag in Figure 1.8.
Correlations between values of the SOI in May
and values in subsequent months decay slowly
with increasing lag, while similar correlations with
values in April decay quickly. Because of this
behaviour, Wright defined an ENSO year that
begins in May and ends in April.

Regular observations taken over extended
periods at a certain station sometimes exhibit
changes in their statistical properties. These might
be abrupt or gradual (such as changes that might
occur when the exposure of a rain gauge changes
slowly over time, as a consequence of the growth
of vegetation or changes in local land use). Abrupt

Figure 1.8: Seasonal dependence of the lag
correlations of the SST index of the Southern
Oscillation. The correlations are given in hundreds
so that isolines represent lag correlations of 0.8,
0.6, 0.4, and 0.2. The row labelled ‘Jan’ lists
correlations between January values of the index
and the index observed later ‘lag’ months [427].

changes in the observational record may take
place if the instrument (or the observer) changes,
the site is moved,9 or recording practices are
changed. Such non-natural or artificial changes are

9Karl et al. [213] describe a case in which a precipitation
gauge recorded significantly different values after being raised
one metre from its original position.
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Figure 1.9:Annual mean daily minimum temper-
ature time series at two neighbouring sites in
Quebec. Sherbrooke has experienced considerable
urbanization since the beginning of the century
whereas Shawinigan has maintained more of its
rural character.
Top: The raw records. The abrupt drop of several
degrees in the Sherbrooke series in 1963 reflects
the move of the instrument from downtown Sher-
brooke to its suburban airport. The reason for
the downward dip before 1915 in the Shawinigan
record is unknown.
Bottom: Corrected time series for Sherbrooke
and Shawinigan. The Sherbrooke data from 1963
onward are increased by3.2◦C. The straight lines
are trend lines fitted to the corrected Sherbrooke
data and the 1915–90 Shawinigan record.
Courtesy L. Vincent, AES Canada.

called inhomogeneities. An example is contained
in the temperature records of Sherbrooke and
Shawinigan (Quebec) shown in the upper panel
of Figure 1.9. The Sherbrooke observing site
was moved from a downtown location to a
suburban airport in 1963—and the recorded
temperature abruptly dropped by more than 3◦C.
The Shawinigan record may also be contaminated
by observational errors made before 1915.

Geophysical time series often exhibit a trend.
Such trends can originate from various sources.
One source is urbanization, that is, the increasing
density and height of buildings around an obser-
vation location and the corresponding changes in
the properties of the land surface. The temper-
ature at Sherbrooke, a location heavily affected
by development, exhibits a marked upward trend
after correction for the systematic change in 1963

(Figure 1.9, bottom). This temperature trend is
much weaker for the neighbouring Shawinigan,
perhaps due to a weaker urbanization effect at that
site or natural variations of the climate system.
Both temperature trends at Sherbrooke and Shaw-
inigan are real, not observational artifacts. The
strong trend at Sherbrooke must not be mistaken
for an indication ofglobal warming.

Trends in the large-scale state of the climate
system may reflect systematic forcing changes
of the climate system (such as variations in the
Earth’s orbit, or increased CO2 concentration
in the atmosphere) or low-frequency internally
generated variability of the climate system. The
latter may be deceptive because low-frequency
variability, on short time series, may be mistakenly
interpreted as trends. However, if the length of
such time series is increased, a metamorphosis
of the former ‘trend’ takes place and it becomes
apparent that the trend is a part of the natural
variation of the system.10

1.2.4 Quality of Forecasts. The Old Farmer’s
Almanacpublishes regular outlooks for the climate
for the coming year. The method used to prepare
these outlooks is kept secret, and scientists
question the existence of skill in the predictions.
To determine whether these skeptics are right or
wrong, measures of the skill of the forecasting
scheme are needed. Theseskill scorescan be used
to compare forecasting schemes objectively.

The Almanac makescategorical forecasts of
future temperature and precipitation amount in
two categories, ‘above’ or ‘below’ normal. A
suitable skill score in this case is the number of
correct forecasts. Trivial forecasting schemes such
as persistence (no change), climatology, or pure
chance can be used as reference forecasts if no
other forecasting scheme is available. Once we
have counted the number of correct forecasts made
with both the tested and the reference schemes, we
can estimate the improvement (or degradation) of
forecast skill by computing the difference in the
counts. Relatively simple probabilistic methods
can be used to make a judgement about the

10This is an example of the importance of time scales
in climate research, an illustration that our interpretation of
a given process depends on the time scales considered. A
short-term trend may be just another swing in a slowly varying
system. An example is the Madden-and-Julian Oscillation
(MJO, [264]), which is the strongest intra-seasonal mode in the
tropical troposphere. It consists of a wavenumber 1 pattern that
travels eastward round the globe. The MJO has a mean period
of 45 days and has significant memory on time scales of weeks;
on time scales of months and years, however, the MJO has no
temporal correlation.
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Figure 1.10: Correlation skill scores for three
forecasts of the low-frequency variations within
the Southern Oscillation Index (Figure 1.2). A
score of 1 indicates a perfect forecast, while a zero
indicates a forecast unrelated to the predictand
[432].

significanceof the change. We will return to the
Old Farmer’s Almanacin Section 18.1.

Now consider another forecasting scheme
in which quantitative rather than categorical
statements are made. For example, a forecast
might consist of a statement such as:‘the SOI
will be x standard deviations above normal next
winter.’ One way to evaluate such forecasts is to
use a measure called thecorrelation skill score
ρ (Chapter 18). A score ofρ = 1 corresponds
with a perfect forecasting scheme in the sense that
forecast changes exactly mirror SOI changes even
though the dynamic range of the forecast may be
different from that of the SOI. In other words,
the correlation skill score is one when there is
an exact linear relationship between forecasts and
reality. Forecasts that are (linearly) unrelated to the
predictand yield zero correlation.

The correlation skill score for several methods
of forecasting the SOI are displayed in Figure 1.10.
Specifically, persistence forecasts (Chapter 18),
POP forecasts (Chapter 15), and forecasts made
with a univariate linear time series model
(Chapters 11 and 12). Forecasts based on
persistence and the univariate time series model
are superior at one and two month lead times. The
POP forecast becomes more skilful beyond that
time scale.

Regretfully, forecasting schemes generally do
not have the same skill under all circumstances.
The skill often exhibits a marked annual cycle

(e.g., skill may be high during the dry season, and
low during the wet season). The skilfulness of a
forecast also often depends on the low-frequency
state of the atmospheric flow (e.g., blocking
or westerly regime). Thus, in most forecasting
problems there are physical considerations (state
dependence and the memory of the system) that
must be accounted for when using statistical tools
to analyse forecast skill. This is done either
by conducting a statistical analysis of skill that
incorporates the effects of state dependence and
serial correlation, or by using physical intuition
to temper the precise interpretation of a simpler
analysis that compromises the assumptions of
stationarity and non-correlation.

There are various pitfalls in the art of forecast
evaluation. An excellent overview is given by
Livezey [255], who presents various examples in
which forecast skill is overestimated. Chapter 18
is devoted to the art of forecast evaluation.

1.2.5 Characteristic Times and Characteristic
Spatial Patterns. What are the temporal char-
acteristics of the Southern Oscillation Index illus-
trated in Figure 1.2? Visual inspection suggests
that the time series is dominated by at least two
time scales: a high frequency mode that describes
month-to-month variations, and a low-frequency
mode associated with year-to-year variations. How
can one objectively quantify these characteristic
times and the amount of variance attributed to
these time scales? The appropriate tool is referred
to as time series analysis (Chapters 10 and 11).

Indices, such as the SOI, are commonly used
in climate research to monitor the temporal
development of a process. They can be thought
of as filters that extract physical signals from a
multivariate environment. In this environment the
signal is masked by both spatial and temporal
variability unrelated to the signal, that is, by spatial
and temporal noise.

The conventional approach used to identify
indices is largely subjective. The characteristic pat-
terns of variation of the process are identified and
associated with regions or points. Corresponding
areal averages or point values are then used to
indicate the state of the process.

Another approach is to extract characteristic
patterns from the data by means of analytical
techniques, and subsequently use the coefficients
of these patterns as indices. The advantages
of this approach are that it is based on
an objective algorithm and that it yields the
characteristic patterns explicitly.Eigentechniques
such as Empirical Orthogonal Function (EOF)
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Figure 1.11: Empirical Orthogonal Functions
(EOFs; Chapter 13) of monthly mean wind stress
over the tropical Pacific [394].
a,b) The first two EOFs. The two patterns are
spatially orthogonal.
c) Low-frequency filtered coefficient time series
of the two EOFs shown in a,b). The solid curve
corresponds to the first EOF, which is displayed in
panel a). The two curves are orthogonal.

analysis and Principal Oscillation Pattern (POP)
analysis are tools that can be used to define
patterns and indices objectively (Chapters 13 and
15).

An example is the EOF analysis of monthly
mean wind stress over the tropical Pacific [394].
The first two EOFs, shown in Figure 1.11a
and Figure 1.11b, are primarily confined to the
equator. The two fields are (by construction)
orthogonal to each other. Figure 1.11c shows the
time coefficients of the two fields. An analysis of
the coefficient time series, using the techniques
of cross-spectral analysis (Section 11.4), shows
that they vary coherently on a time scaleT ≈
2 to 3 years. One curve leads the other by a time
lag of approximatelyT/4 years. The temporal lag-
relationship of the time coefficients together with
the spatial quadrature leads to the interpretation
that the two patterns and their time coefficients
describe an eastward propagating signal that,

Figure 1.12:A schematic representation of the
spatial distributions of simultaneous SST and SLP
anomalies at Northern Hemisphere midlatitudes in
winter, when the SLP anomaly induces the SST
anomaly (top), and when the SST anomaly excites
the SLP anomaly (bottom).
The large arrows represent the mean atmospheric
flow. The ‘L’ is an atmospheric low-pressure
system connected with geostrophic flow indicated
by the circular arrow. The hatching represents
warm (W) and cool (C) SST anomalies [438].

in fact, may be associated with the Southern
Oscillation.

1.2.6 Pairs of Characteristic Patterns. Almost
all climate components are interrelated. When one
component exhibits anomalous conditions, there
will likely be characteristic anomalies in other
components at the same time. The relative shapes
of the patterns in related climate components are
often indicative of the processes that dominate the
coupling of the components.

To illustrate this idea we consider large-scale
air–sea interactions on seasonal time scales at
midlatitudes in winter [438] [312]. Figure 1.12
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illustrates the two mechanisms that might be
involved in air–sea interactions in the North
Atlantic. The lower panel illustrates how a sea-
surface temperature (SST) anomaly pattern might
induce a simultaneous sea-level pressure (SLP)
anomaly pattern. The argument is linear so we
may assume that the SST anomaly is positive. This
positive SST anomaly enhances the sensible and
latent heat fluxes into the atmosphere above and
downstream of the SST anomaly. Thus SLP is
reduced in that area and anomalous cyclonic flow
is induced.

The upper panel of Figure 1.12 illustrates how
a SLP anomaly might induce an anomalous SST
pattern. The anomalous SLP distribution alters the
wind stress across the region by creating stronger
zonal winds in the southwest part of the anomalous
cyclonic circulation and weaker zonal winds in
the northeast sector. This configuration induces
anomalous mixing of the ocean’s mixed layer and
anomalous air–sea fluxes of sensible and latent
heat (cf. [3.2.3]). Stronger winds intensify mixing
and enhance the upward heat flux whereas weaker
winds correspond to reduced mixing and weaker
vertical fluxes. The result is anomalous cooling
of the sea surface in the southwest sector and
anomalous heating in the northeast sector of the
cyclonic circulation.

One strategy for finding out which of the
two proposed mechanisms dominates air–sea
interaction is to identify the dominant patterns in
SST and SLP that tend to occur simultaneously.
This can be accomplished by performing a
Canonical Correlation Analysis(CCA, Chapter
14). In the CCA two vector variablesEX and EY
are considered, and sets of orthogonal patterns
Ep i

X and Ep i
Y are constructed so that the expansion

coefficientsαx
i and αy

j in EX = ∑
i α

x
i Ep i

X and

EY = ∑
j α

y
j Ep j

Y are optimally correlated fori = j
or uncorrelated fori 6= j .

Zorita, Kharin, and von Storch [438] applied
CCA to winter (DJF) mean anomalies of North
Atlantic SST and SLP and found two pairs
of CCA patterns Ep i

SST and Ep j
SL P that were

associated with physically significant correlations.
The pair of patterns with the largest correlation
(0.56) is shown in Figure 1.13. The SLP pattern
represents 21% of the total DJF SLP variance
whereas the SST pattern explains 19% of the total
SST variance.11 Clearly the two patterns support
the hypothesis that the anomalous atmospheric
circulation is responsible for the generation of SST

11The proportion of variance represented by the patterns is
unrelated to the correlation.

anomalies off the North American coast. Peng and
Fyfe [312] refer to this as the ‘atmosphere driving
the ocean’ mode. See also Luksch [261].

Canonical Correlation Analysis is explained in
detail in Chapter 14 and we return to this example
in [14.3.1–2].

1.2.7 Atmospheric General Circulation Model
Experimentation: Evaluation of Paired Sensi-
tivity Experiments and Verification of Control
Simulation. Atmospheric General Circulation
Models (AGCMs) are powerful tools used to sim-
ulate the dynamics of the atmospheric circulation.
There are two main applications of these GCMs,
one being the simulation of the present, past (e.g.,
paleoclimatic conditions), or future (e.g., climate
change) statistics of the atmospheric circulation.
The other involves the study of the simulated cli-
mate’s sensitivity to the effect of different bound-
ary conditions (e.g., sea-surface temperature) or
parameterizations of sub-grid scale processes (e.g.,
planetary boundary layer).12

In both modes of operation two sets of statistics
are compared. In the first, the statistics of the
simulated climate are compared with those of
the observed climate, or sometimes with those of
another simulated climate. In the second mode
of experimentation, the statistics obtained in the
run with anomalous conditions are compared with
those from the run with thecontrolconditions. The
simulated atmospheric circulation is turbulent as
is that of the real atmosphere (see Section 1.1).
Therefore the true signal (excited by the prescribed
change in boundary conditions, parameterization,
etc.) or the true model error is masked by random
variations.

Even when the modifications in the experimen-
tal run have no effect on the simulated climate,
the difference field will be nonzero and will show
structure reflecting the random variations in the
control and experimental runs. Similarly, the mean
difference field between an observed distribution
and its simulated counterpart will exhibit, possibly
large scale, features, even if the model is perfect.

12Sub-grid scale processes take place on spatial scales too
small to be resolved by a climate model. Regardless of the
resolution of the climate model, there are unresolved processes
at smaller scales. Despite the small scale of these processes,
they influence the large-scale evolution of the climate system
because of the nonlinear character of the climate system.
Climate modellers therefore attempt to specify the ‘net effect’
of such processes as a transfer function of the large-scale state
itself. This effect is a forcing term for the resolved scales, and
is usually expressed as an expected value which is conditional
upon the large-scale state. The transfer function is called a
‘parameterization.’
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Figure 1.13:The dominant pair of CCA patterns
that describe the connection between simultaneous
winter (DJF) mean anomalies of sea-level pressure
(SLP, top) and sea-surface temperature (SST,
bottom) in the North Atlantic. The largest features
of the SLP field are indicated by shading in the
SST map, and vice versa. See also [14.3.1]. From
Zorita et al. [438].

Therefore, it is necessary to apply statistical tech-
niques to distinguish between the deterministic
signal (or model error) and the internal noise.

Appropriate methodologies designed to diag-
nose the presence of a signal include the use
of interval estimation methods (Section 5.4) or
hypothesis testing methods (Chapter 6). Interval
estimation methods use statistical models to pro-
duce a range of signal estimates consistent with
the realizations of control and experimental mean
fields obtained from the simulation. Hypothesis
testing methods use statistical models to determine
whether information in the realizations is consis-
tent with the null hypothesis that the difference
fields, such as in Figures 1.14 and 1.15, do not
contain a deterministic signal and thus reflect only
the effects of random variation.

We illustrate the problem with two examples: an
experiment in which there is no significant signal,
and another in which modifications to the model
result in a strong change in the atmospheric flow.

Figure 1.14:The mean SLP difference field be-
tween control and experimental atmospheric GCM
runs. Evaporation over the Iberian Peninsula was
artificially suppressed in the experimental run. The
signal is not statistically significant [402].

Figure 1.15:The mean 500 hPa height difference
field between a control run and an experimental
run in which a positive (El Nĩno) SST anomaly
was imposed in the equatorial Central and Eastern
Pacific. The signal is statistically significant. See
also Figures 9.1 and 9.2 [393].

In the first case, the surface properties of the
Iberian peninsula were modified so as to turn it
into a desert in the experimental climate. That
is, evaporation at the grid points representing
the Iberian peninsula was arbitrarily set to zero.
The response, in terms of January Northern
Hemisphere sea-level pressure, is shown in
Figure 1.14 [402]. The statistical analysis revealed
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that the signal, which appears to be of very large
scale, is mainly due to noise and is not statistically
significant.

In the second case, anomalously warm sea-
surface temperatures were prescribed in the
tropical Pacific, in order to simulate the effect of
the 1982/83 El Nĩno event on the atmosphere. The
resulting anomalous mean January 500 hPa height
field is shown in Figure 1.15. In this case the signal
is statistically distinguishable from the background
noise.

Before using statistical tests, we must account
for several methodical considerations (see Chap-
ter 6). Straightforward statistical assessments that
compare the mean states of two simulated climates
generally use simple statistical tests that are per-
formed locally at grid points. More complexfield
tests, often calledfield significance testsin the
climate literature, are used less frequently.

Grid point tests, while popular because of their
simplicity, may have interpretation problems. The
result of a set of statistical tests, one conducted at
each grid point, is a field of decisions denoting
where differences are, and are not,statistically
significant. However, statistical tests cannot be
conducted with absolute certainty. Rather, they are
conducted in such a way that there is ana priori
specified risk 1−p̃ of rejecting the null hypothesis:
‘no difference’ when it is true.13

The specified risk(1 − p̃) × 100% is often
referred to as thesignificance levelof the test.14

A consequence of setting the risk of false
rejection to 1− p̃, 0 < p̃ < 1, is that we
can expect approximately(1 − p̃) × 100% of
the decisions to bereject decisions when the
null hypothesis is valid. However, many fields of
interest in climate experiments exhibit substantial

13The standard, rather mundane statistical nomenclature for
this kind of error isType I error; failure to reject the null
hypothesis when it is false is termed aType IIerror. Specifying
a smaller risk reduces the chance of making a Type I error but
also reduces the sensitivity of the test and hence increases the
likelihood of a Type II error. More or less standard practice is
to set the risk of a Type I error to(1 − p̃) × 100% = 5% in
tests of the mean and to(1 − p̃) × 100% = 10% in tests of
variability. A higher level of risk is usually felt to be acceptable
in variance tests because they are generally less powerful than
tests concerning the mean state. The reasons for specifying the
risk in the form 1− p̃, wherep̃ is a large probability near 1, will
become apparent later.

14There is some ambiguity in the climate literature about
how to specify a ‘significance level.’ Many climatologists use
the expression ‘significant at the 95% level,’ although standard
statistical convention is to use the expression ‘significant at the
5% level.’ With the latter convention, which we use throughout
this book, rejection at the 1% significance level indicates the
presence of stronger evidence against the null hypothesis than
rejection at the 10% significance level.

spatial correlation (e.g., smooth fields such as the
geopotential heights displayed in Figure 1.1).

The spatial coherence of these fields has two
consequences for hypothesis testing at grid points.
The first is that the proportion of the field covered
by reject decisions becomes highly variable from
one realization of the climate experiment to the
next. In some problems a rejection rate of 20%
may still be globally consistent with the null
hypothesis at the 5% significance level. The
second is that the spatial coherence of the studied
fields also leads to fields of decisions that are
spatially coherent: if the difference between two
mean 500 hPa height fields is large at a particular
point, it is also likely to be large at neighbouring
points because of the spatial continuity of 500 hPa
height. A decision made at one location is
generally not statistically independent of decisions
made at other locations. This makes regions of
significant change difficult to identify. Methods
that can be used to assess the field significance of
a field of reject/retain decisions are discussed in
Section 6.8. Local, orunivariate, significance tests
are discussed in Sections 6.6 and 6.7.

Another approach to the comparison of ob-
served and simulated mean fields involves the use
of classicalmultivariate statistical tests(Sections
6.6 and 6.7). The wordmultivariateis used some-
what differently in the statistical lexicon than it
is in climatology: it describes tests and other in-
ference procedures that operate on vector objects,
such as the difference between two mean fields,
rather than scalar objects, such as a difference of
means at a grid point. Thus a multivariate test is a
field significance test; it is used to make a single
inference about a field of differences between the
observed and simulated climate.

Classical multivariate inference methods can
not generally be applied directly to difference of
means or variance problems in climatology. These
methods are usually unable to cope with fields
under study, such as seasonal geopotential means,
that are generally ‘observed’ at numbers of grid
points one to three orders of magnitude greater
than the number of realizations available.15

15A typical climate model validation problem involves the
comparison of simulated monthly mean fields obtained from
a 5–100 year simulation, with corresponding observed mean
fields from a 20–50 year climatology. Such a problem therefore
uses a combined total ofn = 25 to 150 realizations of mean
January 500 hPa height, for example. On the other hand, the
horizontal resolution of typical present day climate models is
such that these mean fields are represented on global grids with
m = 2000 to 8000 points. Except on relatively small regional
scales, the dimension of (or number of points in) the difference
field is greater than the combined number of realizations from
the simulated and observed climates.
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One solution to this difficulty is to reduce the
dimension of the observed and simulated fields to
less than the number of realizations before using
any inference procedure. This can be done using
pattern analysis techniques, such as EOF analysis,
that try to identify the climate’s principal modes
of variation empirically. Another solution is to
abandon classical inference techniques and replace
them with ad hoc methods, such as the ‘PPP’ test
(Preisendorfer and Barnett [320]).

Both grid point and field significance tests are
plagued with at least two other problems that
result in interpretation difficulties. The first of
these is that the wordsignificancedoes not have
a specific physical interpretation. The statistical
significance of the difference between a simulated
and observed climate depends upon both location
and sample size. Location is a factor that affects
interpretation because variability is not uniform
in space.A 5 m difference between an observed
and a simulated mean January 500 hPa height
field may be statistically very significant in the
tropics, but such a difference is not likely to
be statistically, or physically, significant at mid-
latitudes where interannual variability is large.
Sample size is a factor because the sensitivity
of statistical tests is affected by the amount of

information about the mean state contained in
the observed and simulated realizations. Larger
samples have greater information content and
consequently result in more powerful tests. Thus,
even though a 5 m difference at midlatitudes may
not be physically important, it will be found to
be significant given large enough simulated and
observed climatologies. The statistical strength of
the signal (or model error) may be quantified by
a parameter called thelevel of recurrence, which
is the probability that the signal’s signature will
not be masked by the noise in another identical
but statistically independent run with the GCM
(Sections 6.9–6.10).

The second problem is that objective statis-
tical validation techniques are more honest than
modellers would like them to be. GCMs and
analysis systems have various biases that ensure
that objective tests of their differences will reject
the null hypothesis of no difference with certainty,
given large enough samples. Modellers seem to
have an intuitive grasp of the size and spatial
structure of biases and seem to be able to discount
their effects when making climate comparisons. If
these biases can be quantified, statistical inference
procedures can be adjusted to account for them
(see Chapter 6).


